are presented in Fig. 3. The molecules are linked in infinite chains by a system of hydrogen bonds:

where $\mathrm{O}(\mathrm{C} 4)$ denotes the O atom of a molecule at $x+1, y, z$. There is another hydrogen bond between the $\mathrm{N}(12)$ and $\mathrm{O}(\mathrm{C} 1)$ atoms:

The existence of bifurcated hydrogen bonding was assumed between the $\mathrm{N}(12), \mathrm{N}(1)$ and $\mathrm{O}(\mathrm{C} 11)$ atoms. The angle $\mathrm{N}(1)-\mathrm{H}(\mathrm{N} 12)-\mathrm{N}(12)$ is $93.3(4)^{\circ}$. As the distance of 2.917 (9) \AA between $\mathrm{N}(1)$ and $\mathrm{N}(12)$ is too large, and the free electron pair of $\mathrm{N}(1)$ is involved in a
conjugated double-bond system, we had to discount this possibility.

References

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure. London: Plenum.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Pyżalska, D. \& Borowiak, T. (1980). Acta Cryst. To be published.
Syntex (1976). XTL/E-XTL Structure Determination System. Syntex Analytical Instruments Inc., 10040 Bubb Road, Cupertino, California 95014.
Tcherhlov, A. N., Kaluski, Z., Strucheov, Yu., Wolińska-Mocydlarz, J. \& Kitaigorodskil, A. I. (1974). Zh. Strukt. Khim. 15, 950-952.

Wolińska-Mocydlarz, J. \& Wiewiórowski, M. (1976). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 25, 347-357.

Acta Cryst. (1980). B36, 986-989

The Structure of Tetraphenyldithiapyranylidene*

By Henry R. Luss and Douglas L. Smith
Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, USA

(Received 30 October 1979; accepted 20 December 1979)

Abstract

C}_{34} \mathrm{H}_{24} \mathrm{~S}_{2}, M_{r}=496 \cdot 7\), monoclinic, $I 2 / a, a=$ $25.090(4), b=5.537(3), c=18.067$ (4) $\AA, \beta=$ $100 \cdot 17(2)^{\circ}, V=2471(2) \AA^{3}, Z=4, D_{m}=1 \cdot 34, D_{c}=$ $1.335 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA$ A, $\mu($ Mo $K \alpha)=$ $0.24 \mathrm{~mm}^{-1}, F(000)=1040$. The structure was solved from diffractometer data by direct methods and refined by block-diagonal least squares to $R=0.055$. The centrosymmetric molecules are only approximately planar. The $\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$ bond joining the thiapyranylidene rings is $1.389 \AA$, and the chemically unique bonds in the rings average 1.745 for $\mathrm{S}-\mathrm{C}(1)$, 1.339 for $\mathrm{C}(1)-\mathrm{C}(2)$, and $1.441 \AA$ for $\mathrm{C}(2)-\mathrm{C}(3)$. These distances are consistent with a hybrid molecule composed of contributions of 50% from the uncharged species and 50% from charge-separated canonical structures involving an aromatic sextet.

Introduction. The title compound ($\varphi_{4} \mathrm{DTP}$) can be oxidized to form a radical cation having an aromatic sextet (Perlstein, 1977):

[^0]

Such a material can function as a donor molecule in highly conducting organic charge-transfer salts. Ionradical salts of φ_{4} DTP with TCNQ (Alizon et al., 1977; Isett, Reynolds, Schneider \& Perlstein, 1979a) and with iodide (Isett, Reynolds, Schneider \& Perlstein, 1979b) have been prepared and the electrical properties investigated. We have recently completed studies of the crystal structures of two highly conducting iodide salts, $\varphi_{4} \mathrm{DTP}\left(\mathrm{I}_{3}\right)_{0.36}\left(\mathrm{I}_{5}\right)_{0.40}$ (DTPI1) and $\varphi_{4} \mathrm{DTP}\left(\mathrm{I}_{3}\right)_{0.72}$ (DTPI2) (Luss \& Smith, 1980), and report here the structure of φ_{4} DTP for comparison with the oxidized φ_{4} DTP ions.

Gold, prismatic crystals elongated along b were produced on cooling and evaporating a heated 6:1 THF: acetonitrile solution. Precession photographs showed systematic absences for $h k l, h+k+l$ odd, and $h 0 l, h$ odd, which were consistent with space groups $I a$ and $I 2 / a$. The structure was successfully solved in $I 2 / a$.

Data were collected at Molecular Structure Corp. (MSC) in College Station, Texas, on an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo $K \alpha$ radiation. The cell parameters were determined by least-squares refinement of the settings for 25 reflections ($11<2 \theta<27^{\circ}$). Intensities were measured ($2 \theta<45^{\circ}$) by the $\theta-2 \theta$ scan technique at a variable scan rate of 4 to $40^{\circ} \mathrm{min}^{-1}(2 \theta)$ and were corrected for Lorentz and polarization effects but not for absorption. Of the 1605 intensities measured, 1322 had $I>\sigma(I)$ and were considered observed. Unobserved reflections were excluded from further calculations.

The structure was solved by direct methods at MSC using their structure-determination programs. An E map calculated using the phase set with the best combined figure of merit gave all the nonhydrogen atom positions. H atom positions were determined from a subsequent difference electron density map. Refinement (carried out at our laboratories) was by blockdiagonal least squares (Ahmed, 1970) with 9×9 and 4×4 blocks, respectively, for atoms with anisotropic or isotropic thermal parameters. The

Table 1. Fractional atomic coordinates ($\times 10^{3}$ for hydrogen and $\times 10^{4}$ for other atoms)

For nonhydrogen atoms the thermal parameters are isotropic equivalents of the anisotropic thermal parameters (Hamilton, 1959). Equivalent positions in $I 2 / a$ are $\left(0,0,0 ; \frac{11}{2} \frac{1}{2}\right) \pm(x, y, z$; $\left.\frac{1}{2}-x, y, \bar{z}\right)$.

	x	y	z	$B_{\text {iso }}\left(\AA^{2}\right)$
S	$2893 \cdot 0(4)$	$2116(2)$	$6092 \cdot 9(7)$	$5 \cdot 9$
$\mathrm{C}(1)$	$2279(1)$	$1855(6)$	$6410(2)$	$3 \cdot 0$
$\mathrm{C}(2)$	$2198(1)$	$189(6)$	$6918(2)$	$3 \cdot 1$
$\mathrm{C}(3)$	$2577(1)$	$-1603(6)$	$7271(2)$	$3 \cdot 0$
$\mathrm{C}(4)$	$3125(1)$	$-1390(6)$	$7143(2)$	$3 \cdot 4$
$\mathrm{C}(5)$	$3314(1)$	$115(6)$	$6673(2)$	$3 \cdot 1$
$\mathrm{C}(6)$	$3887(1)$	$178(6)$	$6569(2)$	$3 \cdot 2$
$\mathrm{C}(7)$	$4078(2)$	$1932(7)$	$6143(3)$	$5 \cdot 3$
$\mathrm{C}(8)$	$4609(2)$	$1952(9)$	$6042(3)$	$6 \cdot 3$
$\mathrm{C}(9)$	$4965(1)$	$264(8)$	$6363(2)$	$5 \cdot 2$
$\mathrm{C}(10)$	$4786(2)$	$-1499(9)$	$6773(3)$	$6 \cdot 0$
$\mathrm{C}(11)$	$4255(2)$	$-1563(8)$	$6869(3)$	$5 \cdot 4$
$\mathrm{C}(12)$	$1857(1)$	$3563(6)$	$6057(2)$	$3 \cdot 1$
$\mathrm{C}(13)$	$1318(1)$	$3227(7)$	$6103(2)$	$4 \cdot 9$
$\mathrm{C}(14)$	$928(2)$	$4803(8)$	$5766(3)$	$5 \cdot 6$
$\mathrm{C}(15)$	$1057(2)$	$6742(7)$	$5365(2)$	$4 \cdot 8$
$\mathrm{C}(16)$	$1587(2)$	$7115(7)$	$5314(2)$	$4 \cdot 5$
$\mathrm{C}(17)$	$1982(1)$	$5557(6)$	$5654(2)$	$3 \cdot 7$
$\mathrm{H}(2)$	$185(1)$	$24(6)$	$707(2)$	$4 \cdot 6(8)$
$\mathrm{H}(4)$	$338(1)$	$-234(7)$	$743(2)$	$5 \cdot 5(9)$
$\mathrm{H}(7)$	$384(1)$	$303(7)$	$597(2)$	$6 \cdot 7(10)$
$\mathrm{H}(8)$	$471(2)$	$311(8)$	$575(2)$	$7 \cdot 7(11)$
$\mathrm{H}(9)$	$532(1)$	$24(7)$	$630(2)$	$5 \cdot 8(9)$
$\mathrm{H}(10)$	$501(2)$	$-254(8)$	$699(2)$	$8 \cdot 0(11)$
$\mathrm{H}(11)$	$414(2)$	$-272(8)$	$710(2)$	$7 \cdot 1(10)$
$\mathrm{H}(13)$	$121(2)$	$182(8)$	$639(2)$	$7 \cdot 0(10)$
$\mathrm{H}(14)$	$57(2)$	$445(9)$	$579(2)$	$8 \cdot 1(11)$
$\mathrm{H}(15)$	$79(1)$	$767(6)$	$514(2)$	$4 \cdot 4(8)$
$\mathrm{H}(16)$	$170(1)$	$842(7)$	$503(2)$	$6 \cdot 2(10)$
$\mathrm{H}(17)$	$233(1)$	$586(6)$	$565(2)$	$3 \cdot 6(7)$
17$)$				

quantity minimized was $\sum w\left(F_{o}-K F_{c}\right)^{2}$ with the final weighting defined by $w^{-1}=\sigma^{2}\left(F_{o}\right)+\left(0.02 F_{o}\right)^{2}+2.0$. Atomic scattering factors and anomalous-scattering factors for S were obtained from International Tables for X-ray Crystallography (1974).

Refinement with isotropic temperature factors for hydrogens and anisotropic temperature factors for all other atoms converged to $R=0.055$ and $R_{w}=0.067$. All parameter shifts on the final cycle were $<0 \cdot 2 \sigma$. The final scale factor, K, was 1.474 (6). Residual density in the difference electron density map was between -0.22 and +0.23 e \AA^{-3} except for two peaks $(+0.53$ and ${ }_{-}-0.52$ e \AA^{-3}) about $1 \AA$ on either side of the S atom position. The final atomic parameters are given in Table 1 , with estimated standard deviations in parentheses.*

Discussion. The molecules possess crystallographic $\overline{1}$ symmetry compared to crystallographic 222 symmetry for both DTPI 1 and DTPI2. Atomic labeling and bond lengths and angles are given in Fig. 1, which shows the excellent consistency for chemically equivalent pairs of bonds and angles. The distances are consistent with a hybrid molecule composed of contributions of 50% from the uncharged species

[^1]

Fig. 1. Atomic labeling and bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s given in parentheses.

Table 2. Comparison of bond lengths with expected values and with similar bonds in the radical-cation polyiodide salts

	Bond numbers		Bond lengths (\AA)			
	Observed ${ }^{\text {a }}$	Predicted	Predicted ${ }^{\text {a }}$	φ_{4} DTP b	DTP11 ${ }^{\text {c }}$	DTP12 ${ }^{\text {c }}$
$\begin{aligned} & S-C(1) \\ & S-C(5) \end{aligned}$	d	$1 \cdot 13$	d	$\begin{aligned} & 1.742 \\ & 1.747 \end{aligned}$	1.729	1.715
$\begin{aligned} & C(1)-C(2) \\ & C(4)-C(5) \end{aligned}$	$2 \cdot 0$	1.79	1.35	$\begin{aligned} & 1.341 \\ & 1.337 \end{aligned}$	$1 \cdot 360$	1.366
$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	1.5	1.50	1.39	1.389	1.447	1.442
$\begin{aligned} & \mathrm{C}(2)-\mathrm{C}(3) \\ & \mathrm{C}(3)-\mathrm{C}(4) \end{aligned}$	1.2	1.21	1.44	$\begin{aligned} & 1.442 \\ & 1.439 \end{aligned}$	1.417	1.422
$\begin{aligned} & C(1)-C(12) \\ & C(5)-C(6) \end{aligned}$	1.0	1.00	1.48	$\begin{aligned} & 1.477 \\ & 1.482 \end{aligned}$	1.465	1.482

(a) Burke-Laing \& Laing (1976). (b) This study. (c) Luss \& Smith (1980). (d) Reliable bond-length bond-number curves are not available. The bonds here compare very favorably with those found in $\mathrm{TTT}_{2} \mathrm{I}_{3} \mid \mathrm{av} .=1.738$ (3) $\AA /$ where a bond number of 1.13 is expected (Smith \& Luss, 1977).
and 50% from the twelve canonical structures of the form

in which charges have separated to form an aromatic sextet in one of the thiapyranylidene rings. A bondlength bond-number curve (Burke-Laing \& Laing, 1976) was used to obtain observed bond numbers for the $\mathrm{C}-\mathrm{C}$ bonds. These are compared in Table 2 with bond numbers expected for a $50 / 50$ combination of the above structures, the ratio having been selected to give reasonable agreement between observed and predicted values. Also in Table 2, the predicted and observed bond lengths are compared and show very good agreement. The comparable bond lengths for the oxidized φ_{4} DTP species in the polyiodide complexes are also listed and show the much greater contribution of the aromatic sextet form in these structures in which the φ_{4} DTP moiety has a charge of about +0.74 .

The thiapyranylidene ring is only approximately planar with maximum and r.m.s. deviations of 0.070 and $0.050 \AA$, respectively, but can be considered to be creased about a line between S and $C(3)$ forming two planes which enclose a dihedral angle of 9.3°. Planes fitted to the two thiapyranylidene rings of a molecule are necessarily parallel but are separated by $0.28 \AA$. Both the crease and the plane displacement help to relieve overcrowding between the $H(2)$ and $H\left(4^{\prime}\right)$ atoms. In the oxidized polyiodides DTPII and DTPI2 (Luss \& Smith, 1980), the thiapyranylidene rings, which are related by twofold symmetry, are not parallel but are twisted relative to each other by 20.7 and 20.9°, respectively. Both phenyl rings in φ_{4} DTP are twisted about the $\mathrm{C}-\mathrm{C}$ bond to the thiapyranylidene rings, describing dihedral angles of 8.2° between rings

Fig. 2. (001) stereoscopic view (Johnson, 1971) of the molecular packing. The b axis is horizontal, left to right, and a is vertical, top to bottom. Atom $C(1)$ has been drawn larger for identification.
A and B (Fig. 1) and 12.5° between rings A and C. The comparable angles are 26.1° in DTPI1 and 26.5° in DTPI2.

The molecular packing is shown in Fig. 2. The molecules pack plane-to-plane in columns along b. Adjacent columns in the a and c directions are related by the a and c glides. Because the molecule is not planar, excluding phenyls, the plane-to-plane separation is not well defined; however, the distance between planes fitted to the molecules (excluding phenyls) is 3.5 A.

We thank Mrs E. D. Schneider for providing the crystals, Dr J. H. Perlstein for suggesting the problem, and Dr B. A. Frenz and Dr J. M. Troup of Molecular Structure Corp. for the use of their equipment for data collection and initial structure solution.

References

Ahmed, F. R. (1970). Program NRC-10. National Research Council of Canada, Ottawa.

Alizon, J., Blanc, J., Gallice, J., Robert, H., Fabre, C., Strzelecka, H., Rivory, J. \& Weyl, C. (1977). Lecture Notes in Physics, 65, Organic Conductors and Semiconductors, edited by L. Pal, G. Gruner, A. Janossy \& J. Solyom, pp. 563-569. New York: Springer.

Burke-Laing, M. \& Laing, M. (1976). Acta Cryst. B32, 3216-3224.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.

International Tables for X-ray Crystallography (1974). Vol. IV, Ch. 2. Birmingham: Kynoch Press.
Isett, L. C., Reynolds, G. A., Schneider, E. D. \& Perlstein, J. H. (1979a). Unpublished results.
Isett, L. C., Reynolds, G. A., Schneider, E. D. \& Perlstein, J. H. (1979b). Solid State Commun. 30, 1-6.
Johnson, C. K. (1971). ORTEP-II. Report ORNL-3794, 2nd revision. Oak Ridge National Laboratory, Tennessee.
Luss, H. R. \& Smith, D. L. (1980). Acta Cryst. In the press.
Perlstein, J. H. (1977). Angew. Chem. Int. Ed. Engl. 16, 519-534.
Smith, D. L. \& Luss, H. R. (1977). Acta Cryst. B33, 1744-1749.

Acta Cryst. (1980). B36, 989-991

cis-9-Ethyl-9-methylthioxanthene 10-Oxide

By Shirley S. C. Chu and Robert D. Rosenstein*
School of Engineering and Applied Science, Southern Methodist University, Dallas, Texas 75275, USA

(Received 4 October 1979; accepted 24 December 1979)

Abstract

C}_{16} \mathrm{H}_{16} \mathrm{OS}\), orthorhombic, Pnam, $Z=4$, $M_{r}=256.35, a=11.249$ (1), $b=9.693$ (1), $c=$ 11.797 (2) $\AA, V=1286.3$ (2) $\AA^{3}, D_{x}=1.322 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu(\mathrm{Cu} K \alpha)=2.027 \mathrm{~mm}^{-1}$, final $R=0.063$. In the cis isomer of the title compound, the 9 -ethyl and 10 -oxide groups have a cis relation, and both are in a 'boat-equatorial' conformation with respect to the central ring. The two halves of the molecule are related by a mirror plane.

Introduction. Single crystals of the title compound (I) were obtained through the courtesy of Dr Andrew L. Ternay Jr of the Chemistry Department of the University of Texas at Arlington. The crystals are transparent prisms. The unit-cell parameters were obtained from a least-squares analysis of 15 reflections with 2θ values in the range of $20-65^{\circ}$. The space group, Pna2, or Pnam, was deduced from systematic absences ($0 k l$ absent with $k+l$ odd, $h 0 l$ absent with h odd). The intensity data were collected on a Syntex $P 2_{1}$ automatic diffractometer with a crystal approximately $0.54 \times 0.18 \times 0.11 \mathrm{~mm}$. The crystal was mounted with the a axis approximately along the φ axis of the diffractometer. A $\theta / 2 \theta$ scanning mode with graphitemonochromated $\mathrm{Cu} K a$ radiation was used to measure 1128 independent reflections with 2θ values below 130°; of these, 1006 reflections were considered as

[^2]observed by the criterion $I>3 \cdot 0 \sigma(I)$, where $\sigma(I)$ was determined from counting statistics. The intensity data were reduced to structure amplitudes by the application of Lorentz and polarization factors, and no absorption corrections were applied.

(Ia) A

(Ia) B

(lb) A

(1 b) B

The structure was determined by the application of direct methods with the weighted multisolution tangentrefinement program MULTAN (Germain, Main \& Woolfson, 1971). The correct space group was proved to be Pnam by the structure determination, and the normalized structure factors were also shown to have centrosymmetric distributions. The ratios between $\langle E\rangle$, $\left\langle E^{2}\right\rangle$, and $\left\langle E^{2}-1\right\rangle$ are $0.815,1.000$, and 0.922 , respectively. The E map showed the positions of all non-hydrogen atoms. The refinement was carried out by the full-matrix least-squares method (Busing, Martin

[^0]: * Alternative name: $3,3^{\prime}, 5,5^{\prime}$-Tetraphenyl-4,4'-dithia-1, 1^{\prime}-bi-2,5cyclohexadienylidene.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34994 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Present address: Department of Biology, New York University at Albany, Albany, New York, USA.

